

Progression in written calculations

Aims

The National Curriculum for mathematics aims to ensure that all pupils:
 rapidly and accurately to problems

- reason mathematically by following a line of enquiry, conjecturing relationships and generalisations, and developing an argument, justification or proof using mathematical language

 should consolidate their understanding, including through additional practice, before moving on.
 problems if written and mental arithmetic are secure

Key Stage 1		Lower Key Stage 2		Upper Key Stage 2
The principal focus of mathematics teaching in Key Stage 1 is to ensure that pupils develop confidence and mental fluency with whole numbers, counting and place value. This should involve working with numerals, words and the four operations, including with practical resources (e.g. concrete objects and measuring tools). By the end of Year 2, pupils should know the number bonds to 20 and be precise in using and understanding place value. An emphasis on practice at this early stage will aid fluency.		The principal focus of mathematics teaching in lower Key Stage 2 is to ensure that pupils become increasingly fluent with whole numbers and the four operations, including number facts and the concept of place value. This should ensure that pupils develop efficient written and mental methods and perform calculations accurately with increasingly large whole numbers. By the end of Year 4, pupils should have memorised their multiplication tables up to and including the 12 multiplication table and show precision and fluency in their work.		should develop their ability to solve a wider range of problems, ly complex properties of numbers and arithmetic, and problems gefficient written and mental methods of calculation.
It is important that children understand the concepts of the four operations:				
ADDITION - Combining two or more groups to give a total or sum - Increasing an amount They also need to understand and work with certain principles, i.e. that it is: - the inverse of subtraction - commutative i.e. $5+3=3+5$ - associative i.e. $5+3+7=5+(3+7)$	SUBTRACTION: - Removal of (take away) - Comparison They also need to u principles, i.e. that it - not commut 5 - not associati 10-(3-2)	amount from a larger group two amounts (difference) rstand and work with certain the inverse of addition ve i.e. $5-3$ is not the same as 3 i.e. 10-3-2 is not the same as	MULTIPLICATION - Repeated addition They should also be familiar with the fact that it can be represented as an array. They also need to understand and work with certain principles, i.e. that it is: - the inverse of division - commutative i.e. 5×3 is the same as 3×5 associative i.e. $2 \times 3 \times 5$ is the same as $2 \times(3 \times 5)$	DIVISION - Repeated subtraction - Sharing into equal amounts - Grouping They also need to understand and work with certain principles, i.e. that it is: - the inverse of multiplication [] - not commutative i.e. $15 \div 3$ is not the same as 3 $\div 15$ not associative i.e. $30 \div(5 \div 2)$ is not the same as $(30 \div 5) \div$

- It is school policy that we will use the terms hundreds, tens and ones, (rather than units).
- The word 'regrouping' will be used rather than 'carrying', 'exchanging' or 'borrowing'

- Can I do it in my head using a mental strategy?
 - Could I use some jottings?
 - Should I use a written method?

PROGRESSION IN WRITTEN METHODS FOR ADDITION

USE OF THE CALCULATION MAT FOR COLUMN ADDITION

CONCEPTUAL VARIATION: DIFFERENT WAYS TO ASK CHILDREN TO SOLVE $21+34=55$

Across Key Stage 2, provide plenty of opportunities to use and apply written Use five of these numbers to make the methods in a range of contexts.

What is the mistake?	$*$Find two 3-digit numbers with a sum of 465.

Find the different totals you can make by using any three of these numbers:
1.07, 0.3, 37.03, 17.73, 31.7

- Beth has made a necklace with 123
pink beads and 238 purple beads.
How many beads are on the necklace altogether?

What is the missing number?
548
$7 \square 7$
+1325

PROGRESSION IN WRITTEN METHODS FOR SUBTRACTION

USE OF THE CALCULATION MAT FOR COLUMN SUBTRACTION

CONCEPTUAL VARIATION: DIFFERENT WAYS TO ASK CHILDREN TO SOLVE 391-186				Across Key Stage 2, provide plenty of opportunities to use and apply written methods in a range of contexts.			
	Raj spent $£ 391$, Timmy spent $£ 186$. How much more did Raj spend? Calculate the difference between 391 and 186.	What is 186 less than 391?	Missing digit calculations	What are the missing digits? $\begin{array}{r} \square 3 \\ -5 \square \\ \hline 25 \\ \hline \end{array}$	Use the digits 1, 2, 3, 4, 6, 9 to make the calculation correct	- The Smith family has saved $£ 675$ towards their summer holiday. The cost of the holiday is $£ 2019$. How much more do they need to save? - At the beginning of a cricket match there were 742 people watching. At tea-time 218 people went home. How many were left? - Two numbers have a difference of 1.58. One of the numbers is 4.72. What is the other? Is this the only answer?	- Gordon won $£ 363630$ on the lottery and Betty won $£ 4387$, how much more did Gordon win? - After a sale, Boots cost $£ 55.23$ and trainers cost $£ 34.78$. How much less do the trainers cost?

PROGRESSION IN WRITTEN METHODS FOR MULTIPLICATION
EARLY YEARS
YEAR 1
YEAR 2
YEAR 3
YEAR 4
YEAR 5
YEAR 6

Early Learning Goal Children solve problems， including doubling．

Recognising and making equal groups．
Children may also investigate putting items into resources such as egg boxes，ice cube trays and baking tins which are arrays．

Doubling

They may develop ways of recording calculations using pictures，etc．
A child＇s jotting showing double three as three cookies on each plate．

Solve one－step problems involving multiplication by calculating the answer using concrete objects，pictorial epresentations and arrays with the support of the teacher
Make connections between arrays，number patterns and counting in twos，fives and tens．

Children should use a variety

 of concrete apparatus and pictorial representations to ensure they understand and can explain their thinking and should begin to record their calculations．Counting in multiples，use cubes， and other objects in the classroom

246 y y

Arrays－showing commutative multiplication
$2 \times 5=5 \times 2$

－Recall and use multiplication facts for the 2,5 and 10 multiplication tables．
Calculate mathematical statements for multiplication and division within the multiplication table and write them using the multiplication （x），division（ \div ）and equals（ $=$ signs．
Show that multiplication of two numbers can be done in any order（commutative）and division of one number by another cannot．
Solve problems involving multiplication and division using materials，arrays， repeated addition，mental methods and multiplication and division facts，including problems in contexts．

Continue to solve simple one step problems involving multiplication calculating the answer using concrete objects，pictorials and arrays．

Write and calculate
mathematical statements for
multiplication and division using
the multiplication tables that
they know，including two－digit
by one－digit numbers，using
mental and progressing to
formal l ruitten methods．
Recall and use multiplication
and division facts for the 3，4
and 8 multiplication tables．

Use place value counters to support multiplication

Multiply two－digit and three－ digit numbers by a one－digit number using formal written layout． －Pupils practise to become fluent in the formal written method of short multiplication and short division with exact answers．	Multiply numbers up to 4 digits by a one－or two－digit number using a formal written method，including long multiplication for two－ digit numbers．	Multiply multi－digit numbers up to 4 digits by a two－digit whole number using the formal written method of long multiplication． －Multiply one－digit numbers with up to two decimal places by whole numbers．
Use place value counters to support multiplication		
Grid method	Formal written method	Formal written method
135×6 $\begin{array}{c\|ccc} x & 100 & 30 & 5 \\ \hline 6 & 600 & 180 & 30 \end{array}=810$	$\begin{array}{r} 2513 \\ \times \quad 7 \\ \times \quad 6579 \\ \hline 17591 \\ \hline 322632 \\ \hline 467 \end{array}$	
Expanded method to enable conceptual understanding $\begin{array}{r} 24 \\ \times \quad 3 \\ \hline 12 \\ 60 \\ \hline 72 \\ \hline \end{array}$	Long Multiplication	$\begin{array}{r} 8.7 \\ \times 6.0 \\ \hline \frac{62.28}{4} \end{array} \quad \begin{array}{r} 8.68 \\ \hline \end{array} \quad \begin{array}{r} 60.76 \\ \hline 45 \end{array}$ Also include
Leading quickly to formal written method	$124 \quad 2374$	$\begin{array}{r} 784.9 \\ \times \quad 6.0 \\ \hline \begin{array}{r} 4909.4 \\ \hline 525 \end{array} \quad \begin{array}{r} 41.68 \\ \hline 29.1 .76 \\ \hline 145 \end{array} \end{array}$
$\begin{array}{r} 42 \\ \times \quad 36 \\ \times \quad \begin{array}{r} 36 \\ \hline 126 \\ \hline 144 \\ \hline \end{array} ⿳ 亠 丷 厂 \end{array}$		Decimal multiplication in the context of money and measures
$\begin{array}{r} 312 \\ \times \quad 673 \\ \times \quad \begin{array}{r} 27 \\ \hline 1872 \\ \hline 1921 \end{array} \\ \hline 1952 \end{array}$		$\begin{array}{r} 47.3 \\ \times 62.0 \\ \hline 94.6 \end{array} \quad \begin{array}{r} 31.56 \\ \times 23.00 \\ \hline 9.4 .68 \\ \hline 2838.0 \end{array}$

Grid Method

CONCEPTUAL VARIATION: DIFFERENT WAYS TO ASK CHILDREN TO SOLVE 6×23						Across Key Stage 2, provide plenty of opportunities to methods in a range of contexts			
23 23 23 23 23 23	Mai had to swim 23 lengths, 6 times a week. How many lengths did she swim in one week? With the counters, prove that $6 \times 23=138$	Find the product of 6 and 23$\begin{aligned} & 6 \times 23= \\ & L_{-}=6 \times 23 \end{aligned}$	What is the calculation? What is the product?			* There is space in the car park for 17 rows of 32 cars. How many cars can park? * How many hours are there in one year? * What is the total mass of 235 screws each weighing 6 g ? * Find the area of a swimming pool which is 25 m long and 7.5 m wide	* I buy 1.6 kg of apples. They cost 65 p per kg. how much do I pay? - An exercise book is 15 mm thick. How thick will a pile of 5 exercise books be? - How many different answers can be made by using the digits 2,3 and 4 in this calculation? \square $\square x$ $\square=$	* Organise the digits 9, 7, 5 and 3 into this calculation to give the greatest possible product $\square . \square$ \square $\mathrm{x} \square$	$\times \frac{\square}{6}$
?			100s	10s	1s			- Which is closer to 100: 5.2×17 or	2052
				$\begin{aligned} & \circ 80 \\ & \hline 8.8 \\ & \hline 8.8 \\ & \hline \end{aligned}$				7.2×15 ? Use written methods to prove your answer	
		$\begin{array}{r} 63 \\ \times \quad 23 \quad 6 \\ \hline \end{array}$						- Abbie says that 23.4×5 will be bigger than 53.4×2. Is she correct?	
								* A can of drink contains 0.33 litres. How many litres are in 15 cans?	

EARLY YEARS	YEAR 1	YEAR 2	YEAR 3	YEAR 4	YEAR 5	YEAR 6
Early Learning Goal Children solve problems, including halving and sharing.	- Solve one-step problems involving division by calculating the answer using concrete objects, pictorial representations and arrays with the support of the teacher. - Make connections between arrays, number patterns and counting in twos, fives and tens.	- Recall and use multiplication facts for the 2,5 and 10 multiplication tables. - Calculate mathematical statements for multiplication and division within the multiplication table and write them using the multiplication (x), division $(\div$) and equals ($=$) signs.	- Develop reliable written methods for division, starting with calculations of two-digit by one-digit numbers and progressing to the formal written methods of short division.	- Pupils practise to become fluent in the formal written method of short multiplication and short division with exact answers.	- Divide numbers up to 4 digits by a one- or two-digit number using a formal written method of short division and interpret remainders appropriately for the context.	- Divide numbers up to 4 digits by a two-digit number using the formal written method of short and long division where appropriate, interpreting remainders according to the context.
	Children should use a variety of concrete apparatus and pictorial representations to ensure they understand and can explain their thinking and should begin to record their calculations.	two numbers can be done in any order (commutative) and division of one number by another cannot. - Solve problems involving multiplication and division, using materials, arrays, repeated addition, mental methods and multiplication and division facts, including problems in contexts.	to support partitioning	Use place value counters to support partitioning		Formal written method
		Sharing using place value counters $42 \div 3=$	Partitioning $\begin{gathered} 39 \div 3 \\ 3 \longdiv { 1 0 + 3 } = 1 3 \\ 64 \div 4 \\ \frac{10+6}{30+9}=16 \\ 4 \longdiv { 4 0 + 2 4 } \\ 72 \div 3 \\ \frac{20+4}{60+12}=24 \end{gathered}$	Partitioning $\begin{gathered} 119 \div 7 \\ \frac{10+7}{7 \longdiv { 7 0 + 4 9 }}=17 \\ 216 \div 9 \\ \frac{20+4}{180+36}=24 \end{gathered}$ Short Division $\begin{aligned} & 3 \longdiv { 2 1 } \\ & 6 \longdiv { 6 3 } \\ & \frac{14}{8^{2} 4} \end{aligned}$	Short division $7 \longdiv { 2 \frac { 3 } { 1 6 ^ { 2 } 1 } } \quad 8 \longdiv { 2 4 }$ $6 \longdiv { 1 4 ^ { 2 } 4 6 } \quad 7 \longdiv { 1 3 4 5 }$ There are 421 children here today. How many teams of 9 can we make? $9 \longdiv { 4 2 ^ { 6 } 1 } { } ^ { 4 7 } = 4 6 \text { teams }$ 206 tickets were sold for a concert; there are 7 seats per row, how many rows are needed? $7 \longdiv { 2 0 6 6 } r ^ { 3 } = 3 0 \text { rows }$ $496 \div 11$ becomes	Also include $6 \longdiv { 3 4 ^ { 4 } 3 . 2 6 }$

USING BASE TEN OR PLACE VALUE COUNTERS FOR DIVISION

CONCEPTUAL VARIATION: DIFFERENT WAYS TO ASK CHILDREN TO SOLVE 615 $\div 5$						Across Key Stage 2, provide plenty of opportunities to use and apply written methods in a range of contexts.			
Using the part whole model below, how can you divide 615 by 5 without using short division?	I have $£ 615$ and share it equally between 5 bank accounts. How much will be in each account? 615 pupils need to be put into 5 groups. How many pupils will be in each group?	$5 \longdiv { 6 1 5 }$ $\begin{aligned} & 615+5= \\ & \left\{\begin{array}{l} \text { a } \\ =615+5 \end{array}\right. \end{aligned}$	What is What is	the calcula the answer	lation? er?	- Work out whether or not 29 is a factor of 811 - How many 35p packets of stickers can I buy with $£ 5$? - Coaches have 56 seats for passengers. How many coaches are needed to take 275 people on a trip?	* Pencils come in packs of 12. How many packs does a school need to buy to get 310 pencils? * My mobile phone costs 18p per minute for national calls. If I put $£ 5$ on my card, how many minutes can I talk for? The area of a rectangular games hall is 384 square metres. If the length is 24 metres, how wide is it?	* Work out the missing digit for $37 \square \div 17$, when there is a remainder of 5 . - I bought some pencils that cost 15 p each. I paid $£ 5.85$. How many pencils did I buy? - Four children collected $£ 19$ for charity. They each collected the same amount. How much was this?	- Rupert saves the same amount of money each month. He saved $£ 149.40$ in a year. How much money does he save each month? - Three bags of crisps weigh 130.5 g , how much does one bag weigh?

